
4. A bridge circuit is shown in the diagram. R_1 , R_3 and R_4 are resistances and R_2 is a variable resistance. G is a centre zero galvanometer.

(a) When R_2 increases from zero to a very high value what would you observe in the variation of the deflection of the galvanometer?

(b) When the bridge is balanced for a certain value of R_2 , the currents through R_1 and R_2 are I_1

and I_2 respectively.

(i) What are the currents through R_3 and R_4 ?

.....

(ii) What is the potential difference between B and D?

(iv) Write down expressions for V_{AB} , V_{BC} , V_{AD} and V_{DC} , in terms of R_1 , R_2 , R_3 , R_4 , I_1 and I_2 .

 $V_{AB} = \dots \qquad V_{BC} = \dots$ $V_{DC} = \dots \qquad V_{DC} = \dots$

(v) Obtain an expression for R_4 in terms of R_1 , R_2 and R_3 .

(vi) If $R_1 = 100 \,\Omega$, $R_3 = 50 \,\Omega$, and $R_2 = 82 \,\Omega$, find the value of R_4 .

(c)	A student wants to use the above bridge to measure a very small resistance r (< 1Ω). He is provided with the following.
	Three 10Ω , 100Ω and 1000Ω resistors. Two $0 - 100 \Omega$ and $0 - 1000 \Omega$ resistance boxes.
	He replaces R_4 with the unknown resistor r . Which of the above resistors or resistance boxes
	should he select for R_1 , R_2 and R_3 in order to determine r as accurately as possible?
	For R ₁
	For R ₂
	For R ₃
(d)	When the bridge is balanced, if the cell and the galvanometer are exchanged what should be the deflection of the galvanometer?